Методы и средства наблюдения за трещинами

Мы продолжаем серию публикаций методических рекомендаций по вопросам мониторинга зданий с трещинами. В этой статье будут приведен фрагмент документа «Пособие по обследованию строительных конструкций зданий», разработанного ЦНИИпромзданий, в редакции 2004 года (далее по тексту Пособие). Это одно из самых подробных описаний процесса наблюдения за трещинами, выпущенных за последнее десятилетие. Пособие предназначено для специалистов по обследованию зданий. Однако, часть, касающаяся работы с трещинами, может быть использована и работниками других профессий, в чьи компетенции входит контроль технического состояния зданий и мониторинг деформаций строительных конструкций, например, специалистами по эксплуатации зданий. Далее приводится текст документа и наши комментарии.

5.3. Методы и средства наблюдения за трещинами

5.3.1. При обследовании строительных конструкций наиболее ответственным этапом является изучение трещин, выявление причин их возникновения и динамики развития. Они могут быть вызваны самыми разными причинами и иметь различные последствия.

По степени опасности для несущих и ограждающих конструкций трещины можно разделить на три группы.

  1. Трещины неопасные, ухудшающие только качество лицевой поверхности.
  2. Опасные трещины, вызывающие значительное ослабление сечений, развитие которых продолжается с неослабевающей интенсивностью.
  3. Трещины промежуточной группы, которые ухудшают эксплуатационные свойства, снижают надежность и долговечность конструкций, однако еще не способствуют полному их разрушению.

Следует отметить, что на данный момент отсутствует общепринятая классификация трещин в строительных конструкциях. В разных документах наблюдается различный подход к данному вопросу. При осмотрах и обследованиях зданий оценка степени опасности трещин безусловно важна и является одним из ключевых моментов. Предлагаемое деление трещин на три группы по степени их опасности вполне приемлемо. Однако, не совсем понятны критерии, по которым следует относить трещины к той или иной группе. На степень опасности трещины влияет множество факторов — конструктивные особенности здания, место расположения и параметры трещины, нагруженность и характеристики поврежденной конструкции, причины деформаций и интенсивность их развития, а также многие другие. Для сбора и анализа всей этой информации требуется проведение обследования. Но для обеспечения безопасности важно оценить трещину сразу же после ее выявления. Для этого делается предварительная оценка, точность которой, в условиях недостаточности информации, в большей степени зависит от опыта и знаний специалиста. По результатам предварительной оценки должны быть назначены дальнейшие мероприятия по обеспечению безопасности и получению дополнительных данных, необходимых для уточнения состояния конструкций. В том числе, устанавливается наблюдение за трещинами и разрабатывается состав и график контрольных осмотров.

5.3.2. В металлических конструкциях появление трещин в большинстве случаев определяется явлениями усталостного характера, что часто наблюдается в подкрановых балках и других конструкциях, подверженных переменным динамическим нагрузкам.

Возникновение трещин в железобетонных или каменных конструкциях определяется локальными перенапряжениями, увлажнением бетона и расклинивающим действием льда в порах материала, коррозией арматуры и действием многих труднопрогнозируемых факторов.

5.3.3. Следует различать трещины, появление которых вызвано напряжениями, проявившимися в железобетонных конструкциях в процессе изготовления, транспортировки и монтажа, и трещины, обусловленные эксплуатационными нагрузками и воздействием окружающей среды.

В железобетонных конструкциях к трещинам, появившимся в доэксплуатационный период, относятся: усадочные трещины, вызванные быстрым высыханием поверхностного слоя бетона и сокращением объема, а также трещины от набухания бетона; трещины, вызванные неравномерным охлаждением бетона; трещины, вызванные большим гидратационным нагревом при твердении бетона в массивных конструкциях; трещины технологического происхождения, возникшие в сборных железобетонных элементах в процессе изготовления, транспортировки и монтажа.

Трещины, появившиеся в эксплуатационный период, разделяются на следующие виды: трещины, возникшие в результате температурных деформаций из-за нарушений требований устройства температурных швов или неправильности расчета статически неопределимой системы на температурные воздействия; трещины, вызванные неравномерностью осадок грунтов основания; трещины, обусловленные силовыми воздействиями, превышающими способность железобетонных элементов воспринимать растягивающие напряжения.

5.3.4. При наличии трещин на несущих конструкциях зданий и сооружений необходимо организовать систематическое наблюдение за их состоянием и возможным развитием с тем, чтобы выяснить характер деформаций конструкций и степень их опасности для дальнейшей эксплуатации.

Наблюдение за развитием трещин проводится по графику, который в каждом отдельном случае составляется в зависимости от конкретных условий.

Хотелось бы отметить, что далее по тексту приводятся конкретные данные по периодичности наблюдения за маяками. Однако, следует относится к ним именно как к рекомендуемым. При назначении сроков очередного осмотра трещин каждая ситуация должна рассматриваться индивидуально, а график наблюдений может корректироваться в зависимости от результатов очередного осмотра. В первую очередь это зависит от интенсивности деформационных процессов и «давности» появления трещины. Чем свежее трещина, и чем быстрее она развивается, тем более пристального внимания требует.

5.3.5. Трещины выявляются путем осмотра поверхностей конструкций, а также выборочного снятия с конструкций защитных или отделочных покрытий.

Следует определить положение, форму, направление, распространение по длине, ширину раскрытия, глубину, а также установить, продолжается или прекратилось их развитие.

5.3.6. На каждой трещине устанавливают маяк, который при развитии трещины разрывается. Маяк устанавливают в месте наибольшего развития трещины.

При наблюдениях за развитием трещин по длине концы трещин во время каждого осмотра фиксируются поперечными штрихами, нанесенными краской или острым инструментом на поверхности конструкции. Рядом с каждым штрихом проставляют дату осмотра.

Расположение трещин схематично наносят на чертежи общего вида развертки стен здания, отмечая номера и дату установки маяков. На каждую трещину составляют график ее развития и раскрытия.

Трещины и маяки в соответствии с графиком наблюдения периодически осматриваются, и по результатам осмотра составляется акт, в котором указываются: дата осмотра, чертеж с расположением трещин и маяков, сведения о состоянии трещин и маяков, сведения об отсутствии или появлении новых трещин и установка на них маяков.

Здесь необходимо пояснить, что разрываться может только гипсовый (цементный) маяк. Для маяков других конструкций аналогичным сигналом будет отклонение от начального значения (положения). Также необходимо уточнить, что под «графиком развития, раскрытия трещины» понимается схема, на которой в графическом виде фиксируется изменение трещины во времени (пример приведен далее на рисунке 5.14). А под «графиком наблюдения» понимается именно назначенная периодичность проведения контрольных осмотров. Печатные формы упомянутых акта и графика развития трещин можно скачать на нашем сайте.

Рисунок 5.5 Микроскоп, щуп, лупа
Рис. 5.5. Приборы для измерения раскрытия трещин а — отсчетный микроскоп МПБ-2, б — измерение ширины раскрытия трещины лупой: 1 — трещина; 2 — деление шкалы лупы; в — щуп

5.3.7. Ширину раскрытия трещин обычно определяют с помощью микроскопа МПБ-2 с ценой деления 0,02 мм, пределом измерения 6,5 мм и микроскопа МИР-2 с пределами измерений от 0,015 до 0,6 мм, а также лупы с масштабным делением (лупы Бринеля) (рис. 5.5) или других приборов и инструментов, обеспечивающих точность измерений не ниже 0,1 мм.

Глубину трещин устанавливают, применяя иглы и проволочные щупы, а также при помощи ультразвуковых приборов типа УКБ-1М, бетон-3М, УК-10П и др. Схема определения глубины трещин ультразвуковыми методами указана на рис. 5.6.

5.3.8. При применении ультразвукового метода глубина трещины устанавливается по изменению времени прохождения импульсов как при сквозном прозвучивании, так и методом продольного профилирования при условии, что плоскость трещинообразования перпендикулярна линии прозвучивания. Глубина трещины определяется из соотношений:

Формула определения глубины трещины

где h — глубина трещины (см. рис. 5.6);

V — скорость распространения ультразвука на участке без трещин, мк/с;

ta, te — время прохождения ультразвука на участке без трещины и с трещиной, с;

а — база измерения для обоих участков, см.

Определение глубины трещины
Рис. 5.6. Определение глубины трещин в конструкции
1 — излучатель; 2 — приемник

Здесь можно отметить, что инструменты и приборы, используемые при определении параметров трещины, следует выбирать исходя из конкретных условий, в которых предстоит проводить измерения, а также с учетом материала конструкций и величины повреждений. Например, если трещина в кирпичной кладке имеет ширину раскрытия более 20 мм, то применить большинство измерительных луп и микроскопов не получится. Кроме того, возможно, что в этом случае и точность более чем 0,1 мм не потребуется. Тем не менее, важно всегда стремиться к выполнению измерений с наибольшей точностью. Во многих источниках, также как и в рассматриваемом, принято, что наблюдения за шириной раскрытия трещин следует выполнять с точностью не ниже 0,1 мм. Добиться такой точности, а также сопоставимости результатов при многократных замерах через определенные промежутки времени, можно только в случае, если места замеров четко обозначены непосредственно на конструкции. Для этого можно наносить засечки перпендикулярно трещине в местах замеров, либо закреплять фиксирующие края трещины приспособления.

5.3.9. Важным средством в оценке деформации и развития трещин являются маяки: они позволяют установить качественную картину деформации и их величину.

5.3.10. Маяк представляет собой пластинку длиной 200-250 мм, шириной 40-50 мм, высотой 6-10 м, из гипса или цементно-песчаного раствора, наложенную поперек трещины, или две стеклянные или металлические пластинки, с закрепленным одним концом каждая по разные стороны трещины, или рычажную систему. Разрыв маяка или смещение пластинок по отношению друг к другу свидетельствуют о развитии деформаций.

Маяк устанавливают на основной материал стены, удалив предварительно с ее поверхности штукатурку. Рекомендуется размещать маяки также в предварительно вырубленных штрабах (особенно при их установке на горизонтальную или наклонную поверхность). В этом случае штрабы заполняются гипсовым или цементно-песчаным раствором.

Здесь имеет смысл привести выдержку из другого документа

ГОСТ 24846-2012 Грунты. Методы измерения деформаций оснований зданий и сооружений

3 Термины и определения

3.34 маяк, щелемер: Приспособление для наблюдения за развитием трещин: гипсовая или алебастровая плитка, прикрепляемая к обоим краям трещины на стене; две стеклянные или плексигласовые пластинки, имеющие риски для измерения величины раскрытия трещины и др.

10 Наблюдение за трещинами

10.3 При наблюдениях за раскрытием трещин по ширине следует использовать измерительные или фиксирующие устройства, прикрепляемые к обеим сторонам трещины: маяки, щелемеры, рядом с которыми проставляют их номера и дату установки.

Т.е. по большому счету маяк — это любое устройство, закрепляемое на конструкции в месте расположения трещины, и позволяющее отслеживать изменение ее параметров (ширины, сдвига и т.п.). Далее по тексту Пособия приводятся и другие виды маяков, неуказанные в п. 5.3.10. Соответственно описание маяков в этом пункте Пособия следует считать только одним из примеров.

5.3.11. Осмотр маяков производится через неделю после их установления, а затем один раз в месяц. При интенсивном трещинообразовании обязателен ежедневный контроль.

5.3.12. Ширина раскрытия трещин в процессе наблюдения измеряется при помощи щелемеров или трещиномеров. Конструкция щелемера или трещиномера может быть различной в зависимости от ширины трещины или шва между элементами, вида и условий эксплуатации конструкций.

Возникает вопрос: «Чем щелемер и трещиномер отличаются от маяка?». Четких определений, по которым можно понять различие этих терминов, нам найти не удалось. Назначение, судя по приведенным в документе данным, у них идентичное. Принцип работы может отличаться у разных видов маяков, также как и у щелемеров. Скорее всего, функциональность и возможности для работы с трещинами также не зависят от названия. Хотелось бы все же отделить термин «трещиномер», т.к. более распространено его использование для обозначения электронных приборов, с функциями поиска и определения параметров трещин. Если посмотреть другие методические и нормативные документы данной и смежных тематик, то можно встретить использование терминов «маяк» и «щелемер» для обозначения устройств, аналогичных описываемым в данном Пособии. Причем, прослеживается следующая тенденция — «щелемер» чаще используется в документах, связанных с гидротехническими сооружениями. Возможно, что именно область использования повлияла на распространение названия данных инструментов. Исходя из этого, можно считать, что термины «маяк» и «щелемер» во многом схожи по своему значению. На данный момент это подтверждается и определением из ГОСТ, которое мы приводили в предыдущем комментарии. Надеемся, что в будущем использование терминологии для описания средств наблюдения за трещинами получит большую упорядоченность, а указанные понятия будут разграничены по ясным критериям. Но в данном обзоре мы не будем разделять щелемер и маяк, а предположим, что это в большей степени схожие устройства.

[alert type=»info»]У нас есть дополнительная информация о разграничении понятий маяк, щелемер, трещиномер, деформометр, используемых применительно к средствам наблюдения за трещинами / швами / стыками и другими подобными элементами и повреждениями строительных конструкций зданий и сооружений.

Для ее просмотра перейдите по ссылке:

[kopa_button type=»style2″ size=»small»] Маяки, маяки-щелемеры, щелемеры, трещиномеры, деформометры [/kopa_button][/alert]

Рисунок 5.7 Пластинчатый маяк
Рис. 5.7. Пластинчатый маяк из двух окрашенных пластинок
1 — пластинка, окрашенная в белый цвет; 2 — пластинка, окрашенная в красный цвет; 3 — гипсовые плитки; 4 — трещина

На рис. 5.7-5.12 приведены конструктивные схемы различных типов маяков и щелемеров.

Наиболее простое решение имеет пластинчатый маяк (см. рис. 5.7). Он состоит из двух металлических, стеклянных или плексигласовых пластинок, имеющих риски и укрепленных на растворе так, чтобы при раскрытии трещины пластинки скользили одна по другой. Края пластинок должны быть параллельны друг другу. После прикрепления пластинок к конструкции отмечают на них номер и дату установки маяка. По замерам расстояния между рисками определяют величину раскрытия трещины.

Пластинчатый маяк старого типа
Пластинчатый маяк старого типа
Маяк ЗИ-2у - для трещин в углах
Современный профессиональный пластинчатый маяк

Добавим, что суть пластинчатого маяка заключается в наличии двух пластин, расположенных друг над другом и закрепленных по разные стороны от трещины. По смещению пластин относительно друг друга и определяются происходящие изменения. Именно этот тип маяков в настоящее время имеет наибольшее распространение. На этом принципе работают многие устройства как зарубежного, так и отечественного производства. Профессиональные пластинчатые маяки снабжаются дополнительными элементами, что позволяет расширить их функциональность. Например, есть маяки для точных измерений с закрепленными реперными точками, а также маяки для наблюдений по трем направлениям. В старых зданиях еще можно встретить пластинчатые маяки кустарного изготовления, которые использовались у нас ранее, но они сильно отстают от современных устройств по многим параметрам.

Также отметим, что крепление на конструкции здания маяков (как пластинчатых, так и других типов) при помощи раствора совсем не лучшее решение. В настоящее время у специалистов есть широкий выбор крепежных средств, среди которых многочисленные виды полимерных клеевых материалов, а также стального и полимерного крепежа. При выборе способа крепления следует обращать внимание на то будет ли возможность демонтажа, либо изменения положения маяков после установки. В большинстве случаев предпочтительны методы и материалы, которые исключают возможность изменить положение закрепленных на здании маяков, что исключает ошибки в наблюдениях, например связанные с действиями третьих лиц.

Рисунок 5.8 Щелемер ЛенГИДЕПа
Рис. 5.8. Щелемер конструкции ЛенГИДЕПА
1 — скоба; 2 — измерительная шкала; 3 — трещина; 4 — зачеканка

5.3.13. Щелемер конструкции ЛенГИДЕПА (см. рис. 5.8) состоит из двух латунных пластин, одна из которых расположена в специально выточенном пазу второй пластины. На обеих пластинах имеются шкалы с миллиметровыми делениями, причем на П-образной пластине сделана прорезь для чтения делений шкалы на внутренней (второй) пластине.

Пластины крепятся к изогнутым штырям, свободные концы которых заделываются в бетон. Описанный щелемер позволяет определить величину развития трещин по трем направлениям.

Рисунок 5.9 Маяк Белякова
Рис. 5.9. Маяк конструкции Ф.А. Белякова

5.3.14. Маяк конструкции Ф.А. Белякова в общем виде изображен на рис. 5.9. Он состоит из двух прямоугольных гипсовых или алебастровых плиток размером 100х60 мм и толщиной 15-20 мм. В каждой из плиток на вертикальной и горизонтальной гранях закреплены пять металлических шпилек с острым концом, выступающим на 1-2 мм. Для наблюдения за развитием трещины две такие плитки крепят на гипсовом или алебастровом растворе по обе стороны трещины, чтобы шпильки были расположены на прямых, параллельных друг другу: чтобы шпильки 1, 2, 3, 4 (см. рис. 5.9) на вертикальной плоскости расположились на одной прямой, а четыре других — 5,6,7,8 на другой прямой. Приращение трещины измеряют по изменению положения шпилек. Для этого к шпилькам периодически прикладывают чистый лист бумаги, наклеенный на фанеру, и после легкого надавливания измеряют расстояния между проколами по поперечному масштабу. Маяки конструкции Ф. А. Белякова позволяют определить взаимное смещение сторон трещин в трех направлениях.

Рисунок 5.10 Щелемер с мессурой
Рис. 5.10. Щелемер с мессурой
1 — мессура; 2 — трещина

5.3.15. Щелемер, у которого счетным механизмом служит мессура, схематически показан на рис. 5.10. Данные измерений по мессуре увязываются с температурой воздуха, на которую вводится соответствующая поправка; окончательную величину отсчета S, мм, определяют по формуле

S=F-klt,

где F — отсчет по мессуре, мм;

k — коэффициент линейного расширения металла плеча мессуры;

t — температура воздуха в момент отсчета;

l — длина плеча мессуры, мм.

Данная формула применима  и при использовании щелемеров и маяков других конструкций, когда выполняются точные измерения. Например, для щелемера с рисунка 5.12 плечом будет расстояние между ближайшими к трещине точками крепления, а для щелемера на рисунке 5.11 плечом будет металлическая линейка штангенциркуля. В некоторых источниках рекомендуется при заполнении документов по результатам наблюдения (журнал, акт и т.п.) вместе с данными по замерам величины изменения ширины раскрытия трещины указывать температуру воздуха или конструкции. Это может понадобиться не только для введения поправки на температурные расширения при измерениях, но и для выявления влияния колебаний температуры на изменение параметров трещины. В документы вносят окончательные величины произведенных измерений, с учетом поправки.

Рисунок 5.11 Щелемер для длительных наблюдений
Рис. 5.11. Щелемер для длительных наблюдений
1 — марка; 2 — фланец; 3 — анкерная плита

5.3.16. Щелемер для длительных наблюдений показан на рис. 5.11. Он состоит из двух марок, каждая из которых представляет собой цилиндр из некорродирующего металла с полушаровой головкой, укрепленной на квадратном фланце из листовой стали. Для закрепления фланца в бетоне к нему приваривается анкерная скоба. Пара таких марок устанавливается по обе стороны трещины. Измерение расстояния между марками во время каждого осмотра производится штангенциркулем дважды: в обхват цилиндров и в обхват полушаровых головок с упором ножек штангенциркуля в торцы цилиндров. Однозначность изменений расстояний по обеим измерениям между циклами укажет на отсутствие ошибок при производстве замеров.

Рисунок 5.12 Щелемер для широких швов
Рис. 5.12. Щелемер для измерения широких трещин и швов

5.3.17. Щелемер для измерения деформаций широких швов схематически показан на рис. 5.12. Он состоит из двух отрезков уголкового железа (100х100х100 мм), прикрепленных к обеим сторонам шва при помощи анкерных болтов. К концам уголков прикрепляются две фасонные пластинки из некорродирующего металла. При деформациях шва пластинки скользят одна по другой. Деформацию шва определяют как разность расстояний между вертикальными плоскостями пластинок в отдельных циклах измерений.

Рисунок 5.13 Стрелочный прибор для измерения осадки
Рис. 5.13. Стрелочный рычажный прибор для определения интенсивности неравномерной осадки стены
а – положение прибора до осадки стены; б – положение прибора после осадки стены; 1 – трещина; 2 – указательная стрелка; 3 – шарнирное крепление стрелки на стене; 4 – мерная шкала

5.3.18. Для наблюдений за трещинами и осадками в стенах применяют стрелочно-рычажное устройство, схематически показанное на рис. 5.13. Оно состоит из деревянной или металлической стрелки длиной 0,7-1 м, шарниров и мерной шкалы. Шарниры, закрепляющие стрелку на стене, расположены по обе стороны от трещины. Длина остальной свободной части стрелки в 10 раз больше расстояния между указанными шарнирными креплениями. Таким образом, вертикальному смещению одного шарнира относительно другого соответствует в 10 раз большее смешение вверх или вниз конца стрелки над мерной шкалой (металлической или деревянной рейкой). В этих условиях величина осадок по обе стороны трещины в 1 мм соответствует смещению конца стрелки на 10 мм. При установке прибора на стене свободный конец стрелки помещается над нулевым делением мерной шкалы.

5.3.19. В журнале наблюдений фиксируются: номер и дата установки маяка или щелемера, место и схема их расположения, первоначальная ширина трещины, изменение со временем длины и глубины трещины.

По данным измерений строят график хода раскрытия трещин (рис. 5.14.).

Рисунок 5.14 График раскрытия трещины
Рис. 5.14. График хода раскрытия трещин

В случае деформации маяка рядом с ним устанавливается новый, которому присваивается тот же номер, но с индексом. Маяки, на которых появились трещины, не удаляют до окончания наблюдений.

5.3.20. Если в течение 30 суток изменение размеров трещин не будет фиксировано, их развитие можно считать законченным, маяки можно снять и трещины заделать.

Пункт 5.3.20 является очень спорным, и совершенно неясно из каких соображений установлен срок стабилизации в 30 дней. В пункте 5.3.11 указывался вариант осмотра 1 раз в месяц. Видимо предполагается, что если при очередном ежемесячном осмотре будет выявлена стабилизация (неизменность трещины), то можно выполнять ремонт. Однако, мы считаем, что это совсем не так. В зависимости от причин деформаций и целей наблюдения срок может меняться от нескольких дней до нескольких лет. Если трещина будет заделана до стабилизации деформаций, то деньги на ремонт будут потрачены напрасно, т.к. трещина появится вновь. Короткие сроки наблюдений могут быть допустимы в малозначительных слабонагруженных конструкциях или в случаях текущего косметического ремонта.

Для подтверждения необходимости длительных наблюдений можно привести следующий распространенный пример. Возьмем кирпичное здание, трещины в несущих стенах которого возникли из-за неравномерной осадки в связи с замачиванием линзы просадочного грунта в основании здания. Причем замачивание происходит только в весенний период, когда уровень грунтовых вод поднимается до уровня залегания просадочной прослойки. Допустим мы установили наблюдение за трещинами в июне, сразу же после их выявления. К этому времени просадочные свойства замоченной части проблемного основания уже реализовались и все деформации уже произошли. Дальнейшее развитие трещин уже не происходит, т.к. уровень грунтовых вод понизился и в следующий раз поднимется только весной. Пронаблюдав 30 дней за трещинами мы убираем маяки и выполняем ремонт, а весной у нас опять появляются трещины и мы вынуждены снова начинать наблюдение и готовить деньги для нового ремонта. И это только один из вариантов, когда требуются длительные (не менее 1 года) наблюдения.

На наш взгляд, конкретные сроки наблюдения за трещинами с использованием маяков следует устанавливать исходя из конкретных ситуаций с учетом всех обстоятельств и возможных причин деформаций. Во многих случаях недостаточно одних маков на трещинах, а требуется еще и наблюдение за осадками, либо другие виды мероприятий по мониторингу зданий. Но не зависимо от того, какие мероприятия проводятся, маяки на трещинах должны быть и оставаться там вплоть до завершения ремонта, а иногда и после его завершения — для контроля результатов. Маяки могут использоваться не только для определения причин деформаций и разработки наиболее подходящих способов ремонта. Главное их назначение — это обеспечение безопасности. Именно их использование как сигнальных устройств позволяет своевременно выявлять ситуации, которые могут привести к авариям.

Ниже приведены ссылки на скачивание форм документов:

Скачать “Акт наблюдения за трещинами (pdf)” Akt_nabludenie_treschin.pdf – Загружено 9055 раз – 716 КБ

Скачать “Журнал наблюдения за трещинами (Мешечек, А4)” Jurnal_nablyudeniya_treschin.pdf – Загружено 19339 раз –

Скачать “Шаблон (график) наблюдения за трещинами” Shablon_nabludenie.pdf – Загружено 6883 раза – 574 КБ

Проф. ЗИ

Проф. ЗИ

Ответственный за информационное наполнение сайта Здание-ИНФО.рф Алексей Безродных.

One thought on “Методы и средства наблюдения за трещинами

  • Аватар
    02/10/2014 в 19:29
    Permalink

    Своевременно, как раз сейчас надо свеженайденными трещинами заняться

    Ответ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

16 + 6 =